terça-feira, 16 de outubro de 2018

cromodinâmica quãntica no sistema categorial Graceli.



EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.



, [pTEMR1D] [pI] [PF] [pIT] [CG].


 , [pTEMR1D] [pI] [PF] [pIT] [CG].


 , [pTEMR1D] [pI] [PF] [pIT] [CG].



  , [pTEMR1D] [pI] [PF] [pIT] [CG].


 , [pTEMR1D] [pI] [PF] [pIT] [CG].



Algumas definições[editar | editar código-fonte]

Todos os campos em física de partículas são baseados em certas simetrias da natureza cuja existência é deduzida das observações. Essas podem ser: 
  • simetrias locais, que são simetrias que agem independentemente em cada ponto do espaço-tempo. Cada uma dessas simetrias é a base para uma teoria de calibre, ou teoria de gauge, e requer a introdução de seu próprio bóson de gauge.
  • simetrias globais, que são simetrias cujas operações devem ser aplicadas simultaneamente a todos os pontos do espaço tempo.
QCD é uma teoria de gauge do grupo de gauge SU(3) obtida tomando a carga de cor para definir uma simetria local. 
Como as interações fortes não discriminam entre os diferentes sabores de quark, a QCD contem também uma simetria aproximada entre os sabores, que é quebrada por conta das massas diferentes dos quarks.
Há também simetrias adicionais cujas definições requerem o uso da noção de quiralidade, discriminação entre partículas de mão direita e mão esquerda. Se o spin da partícula tem uma projeção positiva no eixo da direção de seu movimento então a partícula é chama de "partícula de mão esquerda"; de outra forma se trata de uma "partícula de mão direita". 
  • Simetrias quirais envolvem transformações independentes para esses dois tipos de partículas.
  • Simetrias vetoriais (também chamadas de simetrias diagonais) significam que a mesma transformação é aplicada à partículas com os dois tipos de quiralidade. 
  • Simetrias axiais são simetrias em que uma transformação é aplicada à partículas de mão-esquerda e a transformação inversa é aplicada à partículas de mão-direita.

Observações adicionais: dualidade[editar | editar código-fonte]

Como mencionado, liberdade assintótica, significa que para altas energias - o que corresponde a distâncias curtas -  não há praticamente interação entre as partículas. Isso está em contraste - mais precisamente pode-se dizer que tal comportamento é dual - ao que se está acostumado, uma vez que se associa a fraqueza da interação a distâncias longas. Porém, como mencionado no artigo original de Franz Wegner,[7] um físico teórico de estado sólido que introduziu em 1971 modelos simples de retículos invariantes de gauge, o comportamento a altas temperaturas do modelo original, isso é, o forte decaimento de correlações a longas distâncias, correspondem ao comportamento de baixas temperaturas do (normalmente ordenado) modelo dual, a saber, o decaimento assintótico de correlações não-triviais, isto é desvios de curto alcance dos arranjos quase que perfeitamente ordenados, a distâncias curtas. Aqui, em contraste com Wegner, temos o modelo dual, que é o que está descrito nesse artigo.

Grupos de simetria[editar | editar código-fonte]

O grupo de cor SU (3) corresponde a uma simetria local cujo processo de transformação em uma teoria de gauge dá origem à QCD. A carga elétrica é um parâmetro do grupo de simetria local U(1) que é transformada em um parâmetro de gauge e dá origem à QED: nesse caso se trata porém de um grupo abeliano, diferentemente do que ocorre na QCD. 
Considerando-se uma versão da QCD com Nf sabores de quarks sem massa, então há também uma simetria global (quiral) de sabor do grupo SUL(Nf) × SUR(Nf) × UB(1) × UA(1). A simetria quiral é quebrada espontaneamente pelo vácuo da QCD para o vetor (L+R) SUV(Nf) com a formação de um condensado quiral. A simetria vetorial UB(1) corresponde ao número bariônico dos quarks e é uma simetria exata. A simetria axial UA(1) é exata na teoria clássica, porém é quebrada quando quantizada, devido a ocorrência de uma anomalia. Configurações de campos de glúon chamados instantons estão relacionados intimamente com essa anomalia.
Há então dois tipos diferentes de simetrias SU(3): a que age em diferentes cores de quarks, que é uma simetria de gauge exata mediada por glúons, e há também a simetria entre diferentes sabores de quarks, que transforma sabores de quarks uns nos outros, ou simetria SU(3) flavour. A simetria SU(3) de sabores é uma simetria aproximada do vácuo da QCD, e não é uma simetria fundamental. É uma consequência acidental da pequena massa dos três quarks mais leves (up, down e strange).
No vácuo da QCD há condensados de todos os quarks cujas massas são menores que a escala da QCD. Isso inclui os quarks up e down, e em uma medida menor o quark strange, porém nenhum dos outros mais pesados. O vácuo é simétrico sobre uma transformação SU(2) de isospin entre os quarks up e down, em em grau menor também entre rotações entre os sabores updown e strange, ou grupo completo SU(3) flavour, e as partículas observadas compõe multipletos SU(3).
A simetria de sabor aproximada tem também bósons de gauge associados, partículas observadas como o rho e o o omega, mas essas partículas não são como os glúons pois são massivas.

Lagrangiana[editar | editar código-fonte]

A dinâmica dos quarks e glúons é controlada pela lagrangiana da cromodinâmica quântica. A lagrangiana invariante de gauge da QCD é 
onde  são os campos dos quarkos, uma função dinâmica do espaço tempo, na representação fundamental dogrupo de gauge SU(3), indexada por  são os campos de glúons, também funções dinâmicas do espaço-tempo, na representação adjunta do grupo de gauge SU(3), indexado por ab,... ; γμ são as matrizes de Dirac conectando a representação spinorial a representação vetorial do grupo de Lorentz
O símbolo  representa o tensor de força do campo de glúon invariante de gauge, análogo ao tensor de força do campo eletromagnético, F^{\mu \nu} \,, em eletrodinâmica quântica. É dado por:[8]
onde fabc são as constantes de estrutura de SU(3). Note que as regras para mover os índices ab, or c de cima para baixo são triviais (assinatura (+, ..., +)) de forma que fabc = fabc = fabc ao passo que para os índices μ or ν devem ser seguidas as regras não triviais, correspondendo a assinatura métrica (+ − − −), por exemplo.
As constantes m e controlam a massa dos quarks e as constantes de acoplamento da teoria, sujeitas a renormalização da teoria quântica completa.
Uma noção teórica importante envolvendo o termo final da lagrangiana acima é a variável do loop de WilsonEsse loop tem papel importante nas formas discretizadas da QCD (veja QCD na rede), e de forma mais geral, distingue entre estados confinados e livres da teoria de gauge. Foi introduzido pelo físico laureado com Nobel Kenneth G. Wilson.

Campos[editar | editar código-fonte]

O padrão de cargas da força forte das três cores de quark, três antiquarks e oito glúons (com dois de carga zero se sobrepondo).
Quarks são férmions massivos de spin 1/2 que carregam uma carga de cor, que são os parâmetros de gauge da QCD. Quarks são representados por campos de Dirac na representação fundamental 3 do grupo de gauge SU(3). Eles também carregam carga elétrica (-1/3, 1/3, -2/3 ou 2/3, dependendo do sabor e do fato de ser quark ou antiquark) e também participam das interações fracas na forma de dubletos de isospin. Eles carregam números quânticos globais, incluindo o número bariônico, que é 1/3 para cada quark (-1/3 para os antiquarks), hipercarga e um número quântico associado ao sabor (upness, downness, strangeness, etc.)
Glúons são bósons de spin 1 que também carregam carga de cor, uma vez que eles estão na representação adjunta 8 de SU(3). Eles não tem carga elétrica, não sofrem a interação fraca e não tem sabor, tendo portando uma representação de singleto 1 em todos esses grupos de simetria.
Todo quark tem um antiquark correspondente, sendo todas as cargas do antiquark as opostas dos quarks correspondentes.

Dinâmica[editar | editar código-fonte]

De acordo com as regras da teoria quântica de campos, e os diagramas de Feynman associados, a teoria acima reproduz três tipos básicos de interação: um quark pode emitir (ou absorver) um glúon, e dois glúons podem interagir diretamente de duas formas diferente (vértice de três ou quatro glúons). Isso contrasta com a QED, onde apenas o primeiro tipo de interação ocorre, uma vez que os fótons não tem estrutura de carga. Diagramas envolvendo  fantasmas de Faddeev–Popov devem também ser considerados (exceto quando se utiliza o gauge unitário).

Confinamento e lei de áreas[editar | editar código-fonte]

Computações detalhadas com a lagrangiana acima mencionada[9] mostram que o potencial efetivo entre um quark e o seu antiquark em um méson contem um termo , que representa uma certa "inflexibilidade" da interação entre a partícula e sua antipartícula a distâncias grandes, similar a elasticidade entrópica de uma fita de borracha. Isso resulta no confinamento dos quarks[10] ao interior dos hádrons, mésons e nucleons com raios típicos Rc, que correspondem aos modelos de sacola (bag models) de hádrons[11]. A ordem de magnitude do "raio da sacola" é 1fm (= 10−15 m). Além disso, essa inflexibilidade acima mencionada é quantitativamente relacionado ao comportamento da chamada "lei de áreas" do valor esperado do produto do loop de Wilson PW, das constantes de acomplamento ordenadas ao redor de um loop fechado W; ou seja  é proporcional a área delimitada pelo loop. O fato de grupo de gauge ser não-abeliano é fundamental para esse comportamento.



Relação com física do estado sólido[editar | editar código-fonte]

Há relações inesperadas com a física do estado sólido. Por exemplo, a noção de invariaância de gauge forma a base para os vidros de Spin de Mattis[14], que são sistemas cujos graus de liberdade usuais  com i =1,...,N, com os acoplamentos "aleatórios" especialmente adotados  Aqui εi e εk são quantidades independentes e que adotam aleatoriamente os valores ±1, o que corresponde a transformação de gauge mais simples Isso significa que o valor termodinâmico esperado das quantidades mensuráveis, por exemplo a energia são invariantes.
Entretanto, aqui os graus de liberdade de acoplamento  , que no caso da QCD correspondem aos glúons, estão "congelados" em valores fixos (quenching).Em contraste, na QCD eles "flutuam" (annealing), e através de um grande número de graus de liberdade a entropia tem papel importante.
eletrodinâmica quãntica no sistema categorial Graceli

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.



, [pTEMR1D] [pI] [PF] [pIT] [CG].


 [pTEMR1D] [pI] [PF] [pIT] [CG].


Eletrodinâmica quântica (EDQ), ou QED, de Quantum electrodynamics, é uma teoria quântica de campos do eletromagnetismo. A EDQ descreve todos os fenômenos envolvendo partículaseletricamente carregadas interagindo por meio da força eletromagnética. Sua capacidade de predição de grandezas como o momento magnético anômalo do múon e o desvio de Lamb dos níveis de energia do hidrogênio a tornou uma teoria renomada.


A eletrodinâmica foi a evolução natural das teorias da antigamente denominada segunda quantização, isto é, quantização dos campos, ao ramo da eletrodinâmica.
As teorias de campo são necessariamente relativísticas, já que admitindo-se que haja partículas mensageiras na troca de energia e momento mediados pelo campo, essas mesmas partículas, a exemplo do fóton (que historicamente precedeu a descoberta das teorias de quantização do campo) devem se deslocar a velocidades próximas ou igual à da luz no vácuo (c = 299 792 458 m/s).
A primeira formulação da eletrodinâmica quântica é atribuída a Paul Dirac, que nos anos 1920 foi capaz de calcular o coeficiente de emissão espontânea do átomo.[1] Essa teoria se desenvolveu a partir dos trabalhos Sin-Itiro TomonagaJulian Schwinger e Richard Feynman. Pelos seus trabalhos, eles ganharam o prêmio Nobel de Física em 1965.


A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).
campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.
A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:
onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.